Charged Up Speed Sensing
Airmar’s NEW DST900-EM is the industries first all-in-one depth, speed, and temperature sensor with no moving parts. The NEW innovative speed sensor circuitry creates a magnetic field in the water. Speed is accurately measured by the voltage created through conductive properties of water, combined with the forward motion of a vessel. With no moving parts, the DST900-EM is capable of accurate readings at all vessel speeds. What sets the DST900-EM apart from the traditional speed paddlewheel is the excellent accuracy at very low-speeds between 0.5 and 5 knots (0.6 and 6 MPH)—an important feature for sailboat racing. The DST900-EM’s accuracy at high-speeds up to 50 knots (57 MPH) makes it an important sensor for powerboats. By eliminating the traditional paddlewheel, there is no fouling, and drag is reduced to a minimum of 6.3 mm (0.25”) below the hull due to the low-profile housing.

Rated at 100 W power, the 235 kHz depth transducer provides depth readings in as little as 0.45 m (1.4’) of water and can reach depths up to 180 m (600’). The narrow-beam of this transducer will deliver accurate depth readings at speeds over 35 knots (40 MPH). Additionally, the 235 kHz frequency prevents mutual interference with other echosounders on the vessel.

The DST900-EM’s fast-response water temperature sensor provides ±0.2°C (±0.1°F) of accuracy to help in finding the optimum conditions for fishing or swimming. Airmar’s patented housing design incorporates the popular self-closing valve. When the transducer is removed for cleaning, the valve minimizes water flow into the boat.

The lightning-fast processor inside the DST900-EM makes calculations every second, so it can respond quickly to changes in speed, depth, and temperature. This data is then sent to the NMEA 2000® network via a single devicenet cable for an easy plug-and-play installation. Charge up your electronics with the DST900-EM.
As vessel speed increases, the voltage created by the moving water increases and the signal is sent to the microprocessor where it is translated into digital speed information.